《数学《分数除法》教案(优秀28篇)》
《分数与除法》教学反思08-26
分数除法 1
第三单元 分数除法
单元目标:
1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。
单元重点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。
单元难点:
一个数除以分数的计算法则的推导。
1、 分数除法
(1)分数除法的意义和整数除以分数 教学目标: 1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。 2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。 3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。 教学重点: 使学生理解算理,正确总结、应用计算法则。 教学难点: 使学生理解整数除以分数的算理。 教学过程: 一、复习 1、复习整数除法的意义 (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。 (2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5) 2、口算下面各题 ×3 × × × ×6 × 二、新授 1、教学例1 (1)出示插图及乘法应用题,学生列式计算:100×3=300(克) (2)学生把这道乘法应用题改编成两道除法应用题,并解答。 a、3盒水果糖重300克,每盒有多重? 300÷3=100(克) b、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒) (3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。 ×3= (千克) ÷3= (千克) ÷3=3(盒) (4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。 2、巩固分数除法意义的练习:p28“做一做” 3、教学例2 (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的 平均分成2份,并通过操作得出每份是这张纸的几分之几。 (2)小组汇报操作过程,得出:将一张纸的 平均分成2份,每份是这张纸的 。 4÷25(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。 a、 ÷2= = ,每份就是2个 。 b、 ÷2= × = ,每份就是 的 。 (4)如果把这张纸的 平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。 4、引导学生观察 ÷2和 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。 三、练习 ÷3 ÷3 ÷20 ÷5 ÷10 ÷6 四、总结 1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则) 2、谁来把这两部分内容说一说?
分数除法教案 2
教学内容:
分数乘法、除法计算练习
教学目标:
1、通过练习,更好地掌握分数乘法和分数除法的计算方法,形成相应的计算技能,提高计算能力,培养良好的计算习惯。
2、通过练习,进一步提高运用分数乘法计算解决简单的实际问题的能力。
3、通过练习,进一步体会数学知识之间的内在联系,感受数学知识和方法的应用价值,增强学好数学的信息。
教学重、难点:
掌握运用分数乘法解决简单实际问题的基本思路与方法。
教学对策:
设计一些找单位1的量和分析数量关系式的练习,多组织学生说思考过程,通过交流感受一些方法。
教学准备:
自制投影片或小黑板
教学过程:
一、揭示课题
谈话:国庆长假之前,我们学习了分数乘法和分数除法的有关内容,在计算中,同学们还存在一些问题,所以今天这节课,我们将进行相关练习,帮助大家更好地掌握这些知识。(板书课题:分数乘法和分数除法)
二、基本练习
1、计算练习。
5/129/10 3410/51 22/3926/11
10/2112/257/8 3/20145/7
8/15 6 11/622 2515/16 812/13
11/1222/9 15/165/12 5/1410/21
学生任选3道乘法、3道除法进行计算,同时指名学生板演,教师及时结合学生计算情况进行讲评。
组织学生小结分数乘法和分数除法的'计算方法。
2、解方程。
12x=9/11 3/8x=9/10 6/5x=15
学生先独立完成,再指名学生板演,结合板演情况进行讲评时指出解方程的格式及依据,及时纠正学生计算中的错误。
3、在○里填上、或=。
5/711/13○5/7 7/916○7/91/16
5/71○5/7 5/77/5○5/7
6/73/5○6/7 3/84/ 3○3/8
110/9○1 8/111○8/1
学生不计算,通过已学知识进行判断,然后交流判断理由。
教师及时组织学生小结:
一个数乘真分数,结果小于这个数;一个数乘以1,结果等于这个数;一个数乘比1大的假分数,结果大于这个数。
一个数除以真分数,结果大于这个数;一个数除以1,结果还等于这个数;一个数除以比1大的假分数,结果小于这个数。
4、根据已知条件找准单位1的量并说说数量关系式。
(1)白兔只数的5/12是黑兔的只数。
(2)已经修了公路全长的3/4。
(3)今年棉花产量比去年增加1/8。
(4)第三季度冰箱价格比第二季度便宜1/10。
(5)二班植树棵数相当于一班的9/8。
(6)还剩这堆煤的3/8。
学生同桌之间进行练习,每人选3题说说数量关系,然后指名交流。
5、解决实际问题。
(1)小明用3/10小时走了15/16千米,平均每小时走多少千米?照这样的速度,小明走1千米要多少小时?
(2)一种柴油2/3升重8/15千克。1升这样的柴油重多少千克?1千克这样的柴油有多少升?
(3)鹅的孵化期是30天,鸡的孵化期是鹅的7/10,鸭的孵化期是鸡的4/3倍,鸭的孵化期是多少天?
(4)一个乒乓球从50分米的高度下落,每次弹起的高度是下落时高度的2/5,第三次下落时能弹起多少分米?
(5)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是鲜牛奶的2/15。一盒酸奶的净含量是多少升?
(6)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量比鲜牛奶少13/15。一盒酸奶比一盒鲜牛奶少多少升?
(7)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是1/5升。一盒酸奶的净含量比一盒鲜牛奶少多少升?
学生独立完成后进行交流,主要交流思考过程。
三、全课总结
评价一下自己的练习情况,分析一下还存在什么问题。
课后反思:
按照课前的教学设想,我先组织学生进行了分数乘、除法计算练习,然后进行了分析数量关系式的练习,最后进行了解决实际问题的练习。课堂上学习效果还不错。
但从学生作业情况看,有些学生解决实际问题时,还未认真读题就列式计算,这样就存在一个问题,当天所学的如果是分数乘法,这部分学生在解题时就会全部用乘法来解决问题;如果今天学的是分数除法,他们就全部用除法来计算。也就是说完全是模仿,没有自己的理解和对问题的思考、分析。长此下去,造成的后果是严重的。所以要把问题杜绝在源头,在练习过程中,我经常组织学生进行对比练习,逼着他们要独立思考,让他们感到没有自己的思考是无法正确解答题目的。
数学《分数除法》教案 3
教学目标:
1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
2、能力目标:培养学生动手动脑能力,以及判断、推理能力。
3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点:
能求一个数的倒数。
教学难点:
分数除以整数计算法则的推导过程。
教学准备:
长方形纸片。
教学过程:
一、创设情景,教学分数除法的意义
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的`计算方法
(1) 引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21
(3)比较归纳,发现规律。
①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?
②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?
③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
⑥那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三、巩固练习
学生独立完成
四、课堂小结
1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)
板书设计:
分数除法教案 4
教学目的:
使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。
教学过程:
一、复习
1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。
1/5、3/4、7/16、9/9
2、口算下面各题。
1/6÷3、4/5÷2、3/8÷6、6/7÷2
提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)
3、解答应用题。
一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)
提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)
指定一名学生列式解答。
二、新课
揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。
1、出示例题。
一辆汽车小时行驶18千米,1小时行驶多少千米?
提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?
指名列出算式,教师板书:18÷。
2、教学整数除以分数的计算方法。
教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。
提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。
提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)
提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)
提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)
提问:18÷2也就是求18的几分之几?可以怎样写?(学生回答后教师写出“18”。)
提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。
提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。
提问:“由上面的`推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:
18÷==45(千米)
写出答案“答:汽车1小时行驶45千米。”
3、引导学生小结。
“整数除以分数,等于整数乘上除数的倒数。”
三、看教科书中新课内容后试算
全体学生独立计算“做一做”中的练习题:
12÷ 24÷
集体订正计算过程及结果,并提问一个数除以分数的法则。
四、课堂练习
在练习本上计算练习八第1、2题,然后订正计算结果。
五、总结
今天学习了什么新知识?
整数除以分数的计算法则是什么?
计算整数除以分数应注意什么?
六、布置作业
1、阅读教科书第28~29页的内容。
2、在练习本上做练习八第3、4题。
分数除法教案 5
教学目标:
知识与技能:
1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。
2、探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数,解决简单的实际问题。
过程与方法:
让学生在独立思考与合作交流的过程中提高应用所学知识解决实际问题的能力。
情感态度与价值观:
让学生在观察、思考、探索中体验成功的喜悦。
教学重难点:
重点:探索并掌握分数除以整数的'计算方法,并能正确计算。
难点:在涂一涂,算一算等活动中,探索并理解分数除法的意义。
教学具准备:
多媒体课件,投影仪。
教学过程:
一、复习导入,激发学习兴趣,明确学习主题。
1、口算
8×3/40=
21×2/7=
5/27×9=
5/6×12=
4/5×5/8=
3/7×7/10=
2、说出下列各数的倒数,你是如何求的?
1/5
6/7
3/4
3、列式计算
把4张长方形的纸平均分成2份,每份是多少?
把1张长方形的纸平均分成2份,每份是多少?
4、根据演示说一说。
假如这是一张纸,请根据演示(把一张纸的4/7平均分成2份)说一说把什么平均分成2份。(竖着分、横着分)
2、你能用算式表示吗?
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?你能列出算式吗?说说你是怎样想的。
这节课我们就共同探讨分数除法
(一)分数除以整数中相关知识。
出示课题:分数除法
(二)分数除以整数意义和计算方法
二、合作交流,共同解决问题。
1、探讨分数除以整数的意义。
电脑演示把一张纸的4/7平均分成2份,每份是这张纸的2/7
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
你能用算式表示吗?说说你是怎样想的。
电脑直观演示,得出每份是这张纸的4/21
通过上面的学习,你知道了什么?
2、探讨分数除以整数的计算方法
教材第26页填一填、想一想:在()里填上得数,在○里填上“>”、“
如:1÷4=()等三组题
1×1/4=()
1÷4○1×1/4
观察等式左右两边,你发现了什么?
1÷4=1×1/4
10÷5=10×1/5
7÷3=7×1/3
根据除以一个整数(零除外)等于乘这个整数的倒数
我们来试一试:
8/9÷6
4/15÷12
三、深化练习,提高应用能力。
1、
3/8÷5
6/13÷9
5/8÷108/15÷6
2、一小瓶果酱有1/2千克,小明家5天吃完,平均每天吃多少千克?是多少克?
3、填一填
()×5=1/2
()×2=4/5
4×()=1/4
分数除法教案 6
教学目标
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。
3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。
教学重难点
理解分数与除法的关系
教学准备
每人准备4张同样大小的圆片
教学过程
一、引入情境,揭示例题
口答题
1、把8块饼干平均分给4个小朋友,每人分得几块?
2、把4块饼干平均分给4个小朋友,每人分得几块?
3、把3块饼干平均分给4个小朋友,每人分得几块?
怎样列式?板书3÷4
引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?
不满1块那该怎么表示呢?
生:小数或分数
二、实践操作探索研究
师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?
学生动手操作
教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的。把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。
师:接下来我们请同学汇报一下他们研究所得结果。
(生讲述这样分的理由)
教师总结:
(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。
(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。
总结:把3块饼干平均分给4个小朋友,每人分得3/4块
板书:3÷4=3/4(块)
师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?
学生口述理由。板书:3÷5
师:想想该怎么去分?把你的想法和同桌交流下。
指名让学生说说思考过程。
板书:3÷5=3/5(块)
师:如果分给7个小朋友呢?
学生口述3÷7=3/7(块)
三、归纳总结,围绕主题
师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。
板书课题:分数与除法的关系
生相互交流。教师板书:被除数÷除数=
师:除法算式又可以写成什么形式?
生补充:被除数÷除数=被除数/除数
师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?
生:a÷b=a/b
师:这里的a和b可以取任何数吗?为什么?
生:除数不能为0。
师:分数和除法之间的关系,你有什么好的方法记住它们吗?
生交流讨论并回答
师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。
四、巩固练习,拓展延伸
师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。
集体校对。
师引导:比较上下两行有什么不同?
在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。
师:接下来请大家独立完成“试一试”两小题。
然后小组交流你是怎么想的?
师:把7分米改写成用米作单位,可以列怎样的除法算式?
生:7÷10=7/10(米)
师:第二个呢?
生:23÷60=23/60(时)
师:独立完成“练一练”的第二题
集体讲评校对。
师:完成“练习八”的第一题口答
师:完成“练习八”的第三题
学生在书本上完成,
教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?
五、课堂作业
完成“练习八”的第二题
分数除法 7
教学内容:
教科书第55~56页例1及“试一试”“练一练”,练习十一第1~4题。
教学目标:
1、通过本课的学习使学生理解分数除以整数的计算的方法。
2、用两种不同的方法来理解分数除以整数的计算的思路。
3、通过观察发现并总结出分数除以整数的计算的方法。
教学重点:分数除以整数的计算的方法
教学难点:分数除以整数的计算方法的总结。
教学对策:让学生在观察,然后用自己的语言来总结出分数除以整数的计算的方法。
教学过程:
一、引入
1、通过上一单元的学习我们已经学会了如何来计算分数乘法,从今天这节课开始我们将开始学习新的内容。
2、说出下面数的倒数是多少?
3 5 9
二、新课
出示挂图让学生进行观察
例题1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?
2、请学生先在左边的图中分一分再列出算式
分析:学生可能会出现以下的两种情况
情况1:把4/5平均分成2份,就是把4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。
情况2:把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。
3、并请学生把这两种不同的思路进行按照思路进行计算。这里要注意学生所想的要和他的思路所对应。
4、两种方法让学生进行充分的讨论。
通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数等于分数乘以这个整数的倒数的思路。
5、让学生做试一试的题
通过本题的计算使学生先用刚才的方法来计算。
分析:用刚才的方法来进行计算肯定会发现问题。因为在这的分子4不能被3进行整除,所以迫使学生使用刚才所讨论的第2个方法来进行计算。
计算好了以后,再请学生说说你的思路是怎么样的
使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。
6、再请学生进行交流
我们该如何计算分数除以整数?
交流好以后请学生进行回答。
小结:通过刚才我们的学习我们知道分数除以整数的计算的方法是多样的,但用分子平均分成几份的这种方法有局限性,我们一般选择的方法是除以一个数等于乘以这个数的倒数。
三、课本56页的练一练
1、第1题
做此题的目的使学生明确当遇到分子能整除时比较简便。
可以选用这样的方法。
2、第2题
注重样让学生用乘法来计算
做好以后进行集体讲解和订正。
3、第3题
学生独立做,能根据题目灵活选择计算方法。
4、练习十一第2题
本题的题目关键要让学生进行比较,分数乘法和除法的区别。
四、小结
今天学习了什么内容?我们怎么来计算分数除以整数?
课前思考:
例题1结合具体的情境,帮助学生掌握分数除以整数的计算方法,书上介绍了两种方法,其中第一种方法有一定的局限性,即分子必须是整数的倍数,而第二种方法具有普遍意义。
我准备这样处理:复习导入部分的第一、二两个环节同潘老师处理方法,第三个环节改为例题1的准备题:(1)饮料瓶中有2升饮料,平均分给2个小朋友喝,每人可以喝多少升?(2)饮料瓶中有1.2升饮料,平均分给2个小朋友喝,每人可以喝多少升?
再引出例题1,让学生体会到要求“每人可以喝多少升?”这个问题,只要用总共饮料的升数÷喝饮料的人数=每人喝多少升。从而得出算式4/5÷2,在教学分数除以整数的计算方法时,我准备给学生开放的思维空间,让学生自己计算,因为数据小,部分学生可以结合生活经验得出结果,然后让学生说明计算结果的合理性,说说是怎样想的?从而得出两种不同的计算方法,对这两种方法都应给予同样的肯定。然后再出示试一试,让学生用自己喜欢的方法进行计算,在这题的计算中,学生会发现第一种计算方法的局限性,从而比较出两种计算方法的优劣。
由于本课教学内容比较简单,潘老师补充一些拓展练习,增加思维难度,让学有余力的学生也有探究的兴趣。
课前思考:
因为周一时潘老师执教了《分数除以整数》这一课时,听完课后,我就想其实这一课的难点是如何让学生在理解的基础上掌握分数除以整数可以转化为分数乘这个整数的倒数。要突破这一难点要借助学生已有的知识基础,即分数意义和分数乘法的意义。所以,我想在复习铺垫部分增加一个练习,让学生说说“4/5升、3/7米、8/9千克”等分数的意义,然后再让学生练习这样的题目:把3米的绳子平均分成4份,每份是多少米?一根3米的绳子,用去了1/4,用去了多少米?等等类似的题目。新授部分要让学生尝试用不同方法计算,然后充分体验有些方法的局限性,自然而然地接受本课时所要学习的新方法。巩固练习中要关注不同层次的学生的学习情况,及时根据学生中出现的问题调整教学行为。分数乘法和分数除以整数计算的比较也很重要,要利用好教材提供的对比练习,帮助学生进一步掌握本课时的计算方法,提高计算正确率。
课后反思:
计算课上如何让学生经历算法的推导过程,体验探索的过程是非常重要的。反思今天的数学课上,我按照课前设计的教学思路,先组织学生复习了分数的意义,然后又出示了两道实际问题进行对比,有了这样的铺垫后,学生在学习例题时自然而然地想到了分数除以整数可以转化为分数乘整数的倒数,当然有仍然有少数学生想到了其他方法。这样的情形不由得让我反省自己是否铺垫得过多,变学生自由探索为教师领路了,缺少了学生的独立思考和探索。不过,令我感到欣慰的是由于课前复习中突出了分数除法和分数乘法意义,所以在理解分数除以整数为什么可以转化为分数乘这个整数的倒数时,学生基本都能解释得头头是道,而且在巩固练习部分也是很自然地选择了转化为乘法来计算。
以后再次执教本课的话,我想在组织学生探索时,教师不能包办得太多,这样会让学生失去了探索的乐趣。认知冲突是一个人已建立的认知结构与当前面临的学习情境之间暂时的矛盾与冲突,是已有的知识经验与新知识之间存在某种差距而导致的心理失衡。认知冲突的形成能促进学生解决这一冲突的需要,从而激发学生的求知欲和探索心向。而认知冲突的形成,离不开教师的引导与激发。本课中,出示例题后学生往往会把算式和得数一下就说出来,这时就需要教师及时抓住这一制造认知冲突的良好契机。教师可以顺势问学生:“4/5÷2真的等于2/5吗?你有哪些办法说明这个结果是对的?从这些办法中,你能找到分数除以整数的一般算法吗?”开放而有挑战性的问题能激励学生主动探索。所以在设计教学预案和执行教学预案时,作为学生学习活动组织者和引导者、促进者的教师,要不断提高组织学生主动探索的有效性,这样才能切实提高课堂学习的有效性。
课后反思:
学习这节课时,我增加了两题准备题,帮助学生理解这样列式的原因。然后将教学重点定位在“如何计算?你是怎样想的?你有什么办法让别人听懂你的计算方法是正确的?请想办法来解释清楚。”于是,学生投入到积极的思考中,有学生结合生活实际,体会到“平均分给两个人喝,那么每人就喝到这些饮料的一半(1/2)”,所以求每人喝多少,就是求4/5的1/2是多少,从而想到了分数乘法。也有学生从分数的意义来解释,当我提醒学生可以画图分析时,学生的解释更加清楚了。此时选择两种方法的学生各占一半。两种方法在解决例题1时,看不出方法的优劣。当让学生选择自己喜欢的方法解决试一试时,所有的学生都选择了方法一,追问原因,让学生更加深刻体会到方法二的局限性。
从作业情况看,计算方法掌握不错,但还有部分学生在约分时没有约成最简分数,看来约分的技能有部分学生不过关。
分数除法教案 8
一、复习
1、口算分数乘法
前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:
(出示)4/71/3 203/4 3/816 2/33/2
2、(复习倒数)其中当计算完2/33/2时提问:
看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))
说得不错,下面就请同学们说说下面各数的倒数分别是什么?
(出示) 3/8 4 1 2/9
3、把100千克的一桶油平均分成2分,每份是100千克的( )/( ),求100千克的1/2,列式为___。
把24千克的一袋面粉平均分成3份,每份是24千克的 ( )/( ),求24千克的1/3,列式为:_____。
同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。
二、新授
(一)教学例1
1、教学第一种算法
例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?
读题
提问:怎样列式?(4/52)
怎样计算呢?
(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)
从图中你能看出每份是多少米?(板书:2/5升)
那么2/5升是怎样算出的呢?
4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)
(2)补充例证
如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?
怎样列式?(板书)。现在是把几个1/5平均分4份,每份是多少?这里的1是怎样得来的?分母怎样?
(3)观察比较
提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数 板书课题)
(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。
2、教学第二种算法
(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)
(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算
通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的倒数的思路。
(3)让学生做试一试的题(自主选择计算方法)
计算好了以后,再请学生说说你的思路是怎么样的
使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。
(4)你能用简炼的语言概括一下这种方法吗?
教师板书:分数除以整数,等于分数除以整数的倒数
(5)�
教师用红笔标注。
三、巩固练习
老师也为同学们准备了一套星级赛题,你们有信心挑战吗?
一星题:
1、课本56页的练一练第1题
做此题的`目的使学生明确当遇到分子能整除时比较简便。
可以选用这样的方法。
二星题:
2、这里还有6道题,哪些同学愿意到前面来解答的?
练一练第2、3题
让学生能根据题目灵活选择计算方法
做好以后进行集体讲解和订正
三星题:
3、老师这里还有一组辨析题,请你们看看这几道题正确吗?错在哪里?你能帮助改正过来吗?
8/94=8/91/4=2/9 2/73=2/73=6/7
8/94=8/91/4=2/9 3/73=3/71/3=1/7
师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。
四星题:
4、练习十一第2题
本题的题目关键要让学生进行比较,分数乘法和除法的区别。
五星题:
1、如果a是一个不等于0的自然数,13 a等于多少
问:你能用具体的数来检验这个结果吗?
2、( )/( )3=5/18 7/( )=( )/24
四、小结
本课我们学习了什么内容?
分数除法教案 9
教学目标
知识与技能:让学生经历用假设对比方法来解决分数工程问题的过程理解并掌握把工作总量看作单位”1”的分数工程问题的基本特点解题思路和解题方法。
过程与方法:在解题的过程中,通过理清数量关系、找准工作总量来解决学习中的难点问题,掌握用假设法来解决问题的基本策略。
情感态度与价值观:培养学生严谨的学习态度、勇于探究创新的精神及合作的意识。
教学重点:掌握分数工程问题的解题思路与方法。
教学难点:理解工程问题中的工作总量与单位“1”的关系及工作效率的求法。
教学过程:
一、复习导入
1、以前我们学过做工问题,谁还记得做工问题涉及到哪三种量?(工作总量、工作时间、工作效率)它们之间有什么关系呢?
生口述,教师出示投影:
工作总量=工作效率÷工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
2、外贸公司的蒋经理急需加工3000套服装。
甲厂单独完成需15天。
乙厂单独完成需10天。
(学生根据条件提出问题,教师根据学生提出的问题进行板书)
(1)依据三量关系,这道题已知什么?求什么?怎样列式?
(2)说说工作效率、工作时间、工作总量三个量间的关系的其它的`等量关系式
3、引出课题:
像这样的涉及工作效率、工作时间、工作总量的问题,在数学上,我们称之为“工程问题”。今天我们一起来探究。(板书课题:工程问题)
二、探究新知
1、出示例题
外贸公司的蒋经理急需加工一批服装。甲厂单独完成需15天,乙厂单独完成需10天,两厂合作需要几天完成?
(将导入的习题与例题放一起进行对比)
2、阅读理解
请找出已知量和未知量
(已知:甲厂的工作时间,乙厂的工作时间;未知:两厂的工作效率、工作总量)
根据工作总量、工作时间、工作效率这三者之间的关系,要求两队合修多少天能修完,还需要知道哪些条件?
学生讨论交流后汇报:
3、变换题中的条件再分析解答。
(1)把3000套改为6000套、1500套、5000套、9000套。请你们以小组为单位,每一组选择一个数据解答出来。
3、分析与解答
(1)学生思考,讨论交流,道路长度未知,我们可以用什么方法解决这类问题
(学生分小组思考、讨论提出解决问题的方案)
(2)出示课堂活动卡(分小组讨论交流尝试解决问题)
设加工套服装
甲厂每天加工多少套:
乙厂每天加工多少套:
两厂合作,每天加工多少套:
两厂合作,需要多少天:
4、展示环节
(1)抽3-4组同学上台进行展示,并说明解题思路。
(2)观察比较几位同学的解决过程,找发现。
(学生畅所欲言:几组同学的工作总量不一样,每厂的工作效率不一样,最后的结果是一样的)
5、归纳总结
三、巩固练习
1、六(2)班教室做值日,由吴丽斌同学单独完成需x小时,由周超同学单独完成需小时,两人一起做,要多少时间完成?
2、导入部分加一个条件,丙厂也来加入,丙厂单独完成需12天,请提出问题并解答!
四、课堂总结
1、用分数解决工程问题的方法
(1)把工作总量看成单位“1”
(2)谁几天完成,谁的工作效率就是几分之一
(3)工作总量÷工作效率=工作时间
2、还有哪些问题可以用工程问题来解答?
分数除法教案 10
教学目标:
1、知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。
2、过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。
3、情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的过程。
教学重点:
学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。
教学难点:
学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。
教学准备:
小黑板
教学过程:
一、复习
1、口算
15 x=5 34 x=6 3x=910
5x=1011 12 x=89 23 x=67
2、口答下列各题的数量关系式。
⑴某数的。35是36。
⑵全厂人数的58是210人。
⑶完成了300个,刚好是计划的14 。
⑷一个数的3倍是1225 。
3、解答:小营村全村有耕地75公顷,其中棉田占35 。小营村的棉田有多少公顷?
生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?
二、探究新知
师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49 ,一共用了多少个气球?
师:指名读题,谁能找出这道题的已知条件和所求问题。
师:题中"总数的49 "这个条件你是怎样理解的?
师:边画图边理解
师:请同学们看图说说题里的已知条件和问题。
师:观察图示,你发现数量间有怎样的相等关系。
师:你是根据什么列出等量关系的?(同桌讨论)
师:在这个等量关系中,哪个量是已知的?哪个量是未知的?
师:未知的可以设为X,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)
师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?
师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占X的49,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。
师:回顾例题的学习过程,�
师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)
指名板演,其他自练。
三、巩固练习
试一试
四、全课
师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。
五、作业
分数除法教案 11
教学目标:
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重点:理解分数与除法的关系。
教学难点:理解分数表示整数除法的商。
课前准备:课件。
教学过程:
一、激活旧知,引发思考
1、把8块饼平均分给4个小朋友,每人分得多少块?如果有4块饼呢?
学生口答列式,教师板书。
提问:这样的问题为什么用除法算?
指出:把一些物体平均分,求每份是多少,用除法计算。
2、引入新课
二、主动思考,认识新知
1、教学例2
(1)把刚才呈现的题目改为:把1块饼平均分给4个小朋友,每人分得多少块?
怎样列式?
把1块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?
每人分得的不满1块,结果可以用分数表示。
那么,可以用怎样的分数表示1÷4的商呢?请大家拿出1张圆形纸片,把它们看作1块饼,按照题目分一分,看结果是多少?
(2)学生操作,了解学生是怎样分和怎样想的。组织交流,你是怎么分的?
(3)小结:把1块饼平均分给4个小朋友,每人分得14块。完成板书。
2、教学例3:
把3块饼平均分给4个小朋友,每人能分得多少块?
可以怎样列式?3÷4得数是多少?
大家拿出3张圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?
3、独立完成
把3块饼平均分给5个小朋友,每人能分得多少块?
3除以5,商是多少?怎样用分数表示?小组交流。
4、总结归纳
请大家观察上面两个等式,你发现分数与除法有什么关系?
被除数÷除数=被除数/除数
如果用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b
讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。)
5、教学试一试。学生尝试填空。你是怎样想的`?
把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)
6、做练一练第1、3题
学生独立填写,要求说说填写时是怎样想的。
7、做练一练的第2题
学生填写后,引导比较:上下两行题目有什么不同?
三、练习巩固,加深认识
1,做练习八第6题
让学生看图填空。
交流:结果各是多少米?怎样从图上看出结果?
追问:如果列式计算,应该怎样列式,得数是多少
2、做练习八第7题。
让学生独立完成,交流结果。
3、做练习八第8题。
让学生独立解答,交流方法板书。
四、反思总结
今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?
分数除法 12
作者:南京 王凌 一、复习
1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)
如果已知265×362=95930,你能说出答案吗?为什么?
(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)
二、教学分数除法的意义
1、2/7 ×( )=1,括号内填几分之几?为什么?
2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?
(引导说出分数除法的意义)
3、完成p25做一做
三、分数除以整数的计算法则
1、这节课我们学习分数除法
2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?
3、事实上,有一些分数除法同学们是会计算的。下面口算几题:
3/8÷3/8 0÷4/9 1÷2/5 3/4÷1
你是根据什么知识口算这几道题的?
4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。
出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)
怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )
根据学生的回答板书:
3/4÷3 = 3÷34 = 1/4
你能归纳这种分数除以整数的计算方法吗?
5、用这种方法口算:
3/4÷3 4/9÷4 10/9÷5 6/7÷2
6、质疑
� 现在看一看,我们已经掌握了哪些分数除法的知识:
(1)分数除以整数,用分子除以整数的商作分子,分母不变。
(2) 1除以一个分数,结果是该分数的倒数。
(3)一个分数除以1,结果是原分数。
你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。
8、小组汇报
(1)1/5 ÷3=3/15 ÷3=1/15
(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=
(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
(4) ……
你能归纳自己小组讨论的分数除以整数的计算方法吗?
(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。
(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。
(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。
(4)……
9、观察第三种方法:
1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
这个计算过程还可以更简洁些,你能看出来吗?
化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15
观察 1/5÷3== 1/5×1/3 ,你能说一说吗?
(引导学生说出分数除以整数,等于分数乘整数的倒数)
10、计算方法的优化
刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?
学生计算后提问:你喜欢那种方法?为什么?
总结分数除以整数的计算法则:
分数除以整数(零除外),等于分数乘整数的倒数。
11、对其他的方法,你又有什么要说的吗?
(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)
四、课堂练习
1、计算下列各题
2/3÷3 2/11÷2 3/8÷6 5/4÷2
2、练习七第1题
3、讨论题
1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?
分数除法 13
教学内容:
教科书第56~57页例2、例3及 “练一练”,练习十一第5~8题。
教学目标:
1、使学生能够经历探索整数除以分数计算的方法的过程,理解并掌握整数除以分数的计算的方法,能正确计算整数除以分数。
2、使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在关系。
重点:理解并掌握整数除以分数的计算的方法,能正确计算整数除以分数。
难点:在计算的过程中,理解分数除法的意义。
教学过程:
一、教学例题2
1、出示例题2
提问:为什么用4÷2来计算?明确:要求可以分给几人,就是把4个橙子按2个一分平均分,看能分成几份?
追问:如果每人吃1个,可以分给几个人?学生各自列式计算,指名说说列式的依据。
2、出示第(2)题
指名:解答这个问题,为什么可以用除法算式
明确:要求可以分给几人,就是把4个橙子按1/2分一分,看能分成几份。
根据学生的回答,揭示课题:整数除以分数
提问:你能看懂这副图的意思?根据图意想一想,可以怎么样计算
提问:从大家的思考、交流中我们可以看出:4÷1/2=4×2。启发思考:这个等式中的2与1/2有什么关系、从这个等式你还能想到什么?
3、出示第(3)题
学生读题,列式
启发:你能先在图中分一分,再想一想计算结果吗?学生操作后明确:4÷1/3=12
出示:4÷1/3=4×( ) 4÷1/4=4×( )
提问:你能根据刚才的计算结果,想一想,括号里可以填什么数?
学生填写后,提问:你是怎么样想到的?能从不同的角度解释这样填的合理性吗?
二、教学例题3
1、出示例题3
学生读题
提出要求:请你根据每2/3米剪一段,在课本第57页的直条图上分一分,再写出结果
提问:先算一算4×3/2的积,再联系刚才所画的结果想一想,这个等式成立吗?
2、归纳总结
引导:我们刚才一起探索了整数除以分数的计算方法。请大家比较两题所得到的等式,想想整数除以分数可以怎样计算?
先让学生分组讨论,再交流。
引导归纳:整数除以分数,就等于整数乘这个分数的倒数。
三、巩固练习
1、做练一练的第1题
先让学生各自在课本上填写,再指名口答。
2、做练一练的第2题
指名板演,其他的学生各自独立的计算。并进行集体讲解。
3、做练习十五的第5题
先让学生看图想商是几,再计算。比较看图得出的结果与计算得出的结果是否一致。
4、做练习十一的第6题
学生独立的做,选择几道题让学生说说计算时需要注意什么?
5、练习十一的第7、8题
让学生说说为什么这样列式。
四、小结
本课我们学习了什么内容?
第二课时
分数除分数的计算方法如果教师直接告诉学生,只需花2分钟讲解一个计算题,我想90%以上的学生都能掌握。但为什么可以这样算?怎么想到这样算呢?教学中,我们不仅仅满足于学生会做题,更要让学生明白这样做的理由与原因,弄清来龙去脉。
例题2我准备这样教学:学生课前做好准备,每人准备2套操作学具(每套4个同样大小的纸圆片)。课堂教学时,结合具体情境,让学生将纸圆片代替橙子分一分,在分的过程中,自己发现计算结果,再借助操作过程理解体会到4÷1/2的计算结果与4×2相同,再通过进一步的操作(每人分1/3个;每人分1/4个)从而找到分数除分数的计算方法。这样通过直观的动手操作,加深学生印象,体会算理。
课后反思:
教学例2时,学生从各自的数学实际出发,用不同的学习经验和知识基础,对“4÷1/2”的探讨出现了多种不同的思维方式:有的学生将题目中的分数化成小数后再相除;有的学生利用商不变的性质将题目转化成整数除以整数后再计算;有的学生想到把分数除法转化成分数乘法进行思考等等。当学生出现这些方法时,我要求学生把这些方法放在“整数除以分数”的背景下分析,学生确实具备了这样的本领,能够对每一种方法进行评析。在学生们的互相评价中,引发了对所学知识的更深思考,学生所反映出的这些方法都是运用旧知识解决的,这时我抓住这一时机及时地告诉学生这是一种很重要的数学思考方法。在这个过程中,学生也体验和感悟到了学习数学的科学方法,这对学生今后的学习和发展非常重要。
从作业的反馈情况来看,还有2个学生出现了把被除数转化成倒数来做,订正时我加以了辅导。
课前思考:
正如高教导在“课前思考”中谈到的那样,如果我们教师将本课时要学习的整数除以分数的计算方法直接灌输给学生的话,几分钟的时间就足够了。但这样就等于每个学生都真正掌握和理解了吗?所以和以往的教材相比,现在使用的国标本教材上充分体现了要让学生经历探索计算方法的过程,要让学生在理解算理的基础上掌握计算方法,然后才有可能灵活、正确、熟练地进行计算。
作为教师的我们又该为学生做些什么呢?教师对问题的思考不能代替学生们对问题的思考,所以本课中要在采用何种方法使学生理解算理上多动脑筋。教材中例2创设了分橙子的问题情境,要组织学生通过操作来感受整数除以分数的计算方法。所以我也采用了高教导提出的让学生课前准备好几个圆,课堂上用圆来代替橙子进行操作,操作不是最终目的,要通过操作让学生理解并确认除法的计算方法。例2的第3小题和例3可以让学生画图来帮助分析,而且例3更带有让学生先尝试用整数乘这个分数的倒数来计算,然后进行验证的意图。所以在本课时例题的教学中要把握“建立等式——研究变化——领悟算法”这样的教学流程。
课后反思:
新授学习时,我重点围绕两个问题:1、怎样列式?这样列式的数量关系是什么?2、两道准备题学生已将数量关系理解透彻,当出示第三题“每人吃1/2,可以分给几人”时,学生已经能顺着思路理解数量关系,体会列式依据。于是将重点转向第二个问题:“如何计算”?我让学生借助手中的圆片,将圆片代替橙子,分一分,然后向同桌说明计算结果是多少?再解释一下你是怎样想的?由于有直观的材料,学生能很清晰地解释原因,体会到每人吃1/2个,那么每个橙子可以分给2人,4个橙子可以分给4个2人吃。初步感知4除以1/2结果和4乘2的结果相同。这样的想法是否正确呢?于是引导学生继续按要求分一分:每人吃1/4,可以分几人?每人吃1/3,可以分几人?学生在分的过程中,能清晰认识到:每人吃几分之一,那么1个橙子就可以分给几个人吃,有几个橙子就可以分给几个几人吃。再引导学生对比,让学生自己得出计算方法。
例题3的教学,我重点放在对分数意义的理解上,引导学生用画线段图的方法分析题意。并结合题目巩固计算方法,验证计算方法的合理性、正确性。
学习巩固完后,我引导学生对今天学的分数除法与昨天学的分数除法进行比较,发现两者的相同点:1、都将分数除法转化成分数乘法;2、除以几转化成乘以几的倒数;3、第一个数都没有发生变化。所以在今天的作业中,没有出现计算方法上的错误现象。
附板书设计:
分数÷整数= 分数×整数的倒数
分数除法
整数÷分数= 整数×分数的倒数
课后反思:
课前进行教学设计的思考时,我觉得让学生掌握整数出除以分数的计算方法并正确计算应该不存在太大的问题,难点是如何让学生理解整数除以分数可以转化为整数乘这个分数的倒数。所以今天的课堂上,我在教学例题2和例题3时,将解决教学难点的切入点放在引导学生观察直观图理解计算结果和从不同的角度进行思考。如:教学例题2中的第2小题时,启发学生先从直观图中看出答案,即每人吃1/2个,4个橙子可以分给8人吃;也可以想“1个橙子可以分给2人吃,4个橙子可以分给8人吃。”然后再用一开始就猜想的方法来计算,再次进行验证。教学第3小题和第4小题时,就及时放手让学生独立操作并计算,验证自己的计算结果是否正确,然后再请学生来交流。通过这样的几个层次的练习,学生们感悟到了分数除法和分数乘法之间的联系。例题3算理的理解可能更为抽象,所以我先让学生思考“2/3米”是什么意思,学生联系旧知理解为“把1米平均分成3份,取这样的2份。”然后再启发学生如何在线段图上表示,有了这样的铺垫,学生们都能正确画线段图来思考4÷2/3的结果。
反思今天的课堂教学,在知识教学这一块应该说比较扎实了,但不足之处是教学中,有些环节是要学生自己思考、体会、交流时,我没有留足时间给学生,很多时候是自己一个人在侃侃而谈,用教师的“讲”替代了学生的“学”,这是教学上的失败之处。可能还是受教学任务的影响,觉得一节课上要教学完这几个例题和让学生完成这些练习,于是就在无形中挤掉了一些原本属于学生的时间。我们的初衷不是要将学生培养成计算高手,而是有自己的思维和创新意识的独立个体,所以以后不能再犯“越俎代庖”这样的错误了。
补充
在对“整数除以分数”的教学中,我高兴地看到了学生真正成为学习的主人。
⒈使学生经历了自主探究的过程。探究是感悟的基础。没有探究就没有深刻的感悟。在尝试教学中,我先让学生独立思考,探究计算方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的计算方法。使学生经历独立探究、小组探究的过程,使学生对“整数除以分数”的算理和算法有初步的感悟。
⒉以探索为主线,鼓励学生算法多样化。学生是课堂教学中的主体,将更多的时间、空间留给学生,是调动和发挥学生主体意识的重要途径之一。从问题的提出,就让学生主动参与到探索和交流的数学活动中来。在探索的过程中,尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。让学生充分评价和反思。在教学过程中要引导学生加以评价,加强反思。当学生探索出多种算法后,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种算法是否更具有一般性,普遍性。
分数除法 14
课 时 授 课 计 划章节题目二、(1~1) 教学目的1理解的意义,掌握的计算方法。2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解的意义,掌握分数除以整数的计算方法。教学难点 培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影 板书设计 1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/5÷2 =0.8÷2 =0.4(米)4/5÷2 =4÷2/5 =0.4(米) 4/5÷2 =4/5×1/2 =0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程 意图媒体教师活动学生活动一、复习 导入新课为迁移做准备 明确意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/2×4 或4×1/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2÷ 4 =1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?2÷1/2 =4(千克)3讨论:结合以上三题,请同学们思考的意义。通过以上数学活动,同学们已经明确了与整数除法的意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么又怎样计算呢?今天我们就来研究这个问题。课题:指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果 二、新课 学习分数除法的计算方法 学习分数除法的计算方法板书 激发兴趣 汇报 板书 板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解“4/5米的意义” ?米 ?米 4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/5÷2 =0.8÷2 =0.4(米)②4/5÷2 =4÷2/5 =0.4(米) ③4/5÷2 =4/5×1/2 =0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/5×1/2。2尝试计算方法:三选一计算3/8÷5 1/3÷2 5/9÷3①3/8÷5 =3/8×1/5 =3/403/8÷5 =3÷5/8 =0.6/8 =3/403/8÷5 =0.375÷5 =0.075②1/3÷2 =1/3×1/2 =1/6 1/3÷2 =1÷2/3 =0.5/3 =1/6③5/9÷3 =5/9×1/5 =5/27哪种方法最好,为什么?3用这种最简便方法计算:7/13÷14 5/9÷104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义 讨论方法 选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外三、练习巩固分数除法的计算法则投影 投影 1计算:14/15÷7 4/5÷3 4/11÷82填空:2/3÷5 =2/3×( )3/7÷9 =3/7×( )5/6÷10 =5/6×( )19/20÷8 =19/20×( )3/11÷6 =3/11○1/65/6÷6 =5/6○( )12/17÷3 =( )○( )3课后讨论:2/7÷3你会做,3÷2/7你行吗?认真计算 熟练运用法则 思考四、作业 P26 2、5
分数除法 15
教学内容:教科书练习十二第4~8题。
教学目标:
1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。
2、使学生在探索解决问题方法的过程中,进一步培养学生独立思考等能力。
重难点:列方程解应用题的解题的步骤和思路
对策:通过学生的练习,让学生在练习中掌握解题的方法。
教学过程:
一、昨天我们学习了什么内容?
请学生进行口诉
练习写等量关系
1、一桶油用去了12吨,正好用去了这桶油的3/5
( )千克数×3/5=( )
2、养了12只白兔,是黑兔的2/3
( )×2/3=( )
3、一本书书共100页,看了它的4/5
( )×4/5=( )
小结:在解答分数应用题时候,如果单位1知道了那我们就直接用数学方法来进行解答,如果单位1不知道那我们就用方程来进行解答。
二、进行解答练习
1、对比分析
重点分析此题从中让学生掌握解题的方法
(1)小明看一本100页的书,看了这本书的4/5,他看了多少页?
分析:
先请学生写出这题的等量关系式子
一本书的页数×4/5=看的页数
提问:我们把哪个量看做单位1的量?
这里的结果为什么等于看的页数?
强调:这里的4/5是看的分率,用单位1的量乘以看的分率就等于看的具体的页数。
分析:在此题中单位1是多少页,在条件中有没有直接告诉我们
强调:单位1的量已经告诉我们了是100页,所以只要根据等量关系式,用乘法来进行计算。
请学生列出算式。
100×4/5=80页
(2)小明看一本书,看了80页正好看了这本书的4/5,求这本书共多少页?
先请学生写出这题的等量关系式子
一本书的页数×4/5=看的页数
提问:我们把哪个量看做单位1的量?
分析:在此题中单位1是多少页,在条件中有没有直接告诉我们
强调:单位1的量没有明确的告诉我们是多少页,所以我们应该选择用方程来进行解答
请学生列出算式。
解:设这本书共有x页
x×4/5=80
x=100
(3)比较两题
两题有什么共同和不同的地方?
(4)我们如何来解答分数应用题解题的步骤是怎么样的?
1、找出关键句
2、列出数量之间的关系
3、判断单位1的量知不知道
4、列出算式或方程
5、解答、检验
2、练习十二的第7题
请学生进行练习
三、练习
1、(1)一瓶酱油,已用去3/10,用去了3/4升,这瓶酱油多少升?
(2)一瓶酱油,用去一部分后还剩1/2升,还剩1/5,这瓶酱油多少升?
2、工厂有一堆煤,烧去2/3,还剩2/5吨,还剩几分之几?这堆煤有多少吨?
让学生独立的做,做好以后请学生联系题目说说解答的方法。
3、甲、乙两堆煤原来一样重,现在从甲堆运10吨到乙堆,这时甲的重量比乙少1/3,乙堆煤现在重多少吨?
四、全课小结
今天这节课我们学习了什么内容?你有什么收获?还有没有疑惑的地方?
五、布置作业
课前思考:
在前一课时例题5的学习中,学生们学会了用列方程的方法来解决已知一个数的几分之几是多少求这个数的实际问题。教材在这之后马上安排分数乘、除法两步计算的实际问题,对于很多学生来说有一定难度,所以潘老师增加了这一节练习课,为后面的学习作好充分准备。
在本课的练习中,我想一方面是进一步巩固前一课时所学内容,即让学生正确分析数量关系,然后列方程解决类似例题5的实际问题,另一方面也可根据班级实际情况,向学生介绍像这类题目也可以用除法计算来解决问题。还有一个重要内容是将前一单元学习的分数乘法和本单元学习的分数除法的实际问题进行对比练习,通过对比练习使学生进一步理清解题思路,掌握寻找关键句来分析数量关系的方法。
潘老师在用好教材上提供的练习题的同时又增加了一些练习,使练习课的内容丰富了许多。我想根据学生学习情况,是否再增加这样一个练习,即教师提供一些信息,让学生将信息补充完整,可以补充为分数乘法的实际问题,也可以补充为分数除法的实际问题,如:教师提供给学生这样一个信息——足球的个数是篮球的2/5,然后让学生继续补充其他信息使 这样较为开放的练习形式可能会使学生对学习产生一些兴趣,也能帮助他们更好地掌握数学知识。
课前思考:
简单的分数乘除法应用题是学生学习分数应用题的基础,所以必须在这两种基本题的学习中,要让学生掌握解题的基本思路。在上节课的学习中,我已结合例题5的学习,引导学生总结归纳解答分数应用题的解答步骤,今天看到潘老师在练习课中也进行了归纳与总结。的确,学习中,数学思想方法的学习比数学知识的学习更重要!
潘老师的练习设计中,在学生容易出错的数量关系上舍得花时间,在两种类型的对比上舍得花时间,正所谓“磨刀不误砍材时”。
建议:是否再增加对比的力度与容量?在书上第7题后增加:根据题目先说数量关系,然后列算式或方程式,不计算的练习,让学生直接口答。
练习题设计为:
(一)根据题目先说数量关系,然后列算式或方程式,不计算。
1、六1班男生有20人,是女生人数的4/5,六1班女生有多少人?
2、一条公路长1000千米,已经修好了3/4,已经修好了多少千米?
3、一本书看了一些后还剩下2/5,正好剩下40页,这本书有多少页?
(二)补上合适的条件与问题,使
( ),白兔的只数是黑兔的3/4,( )
1、独立思考,再组织交流。
2、引导分析:根据关键句,是把黑兔的只数看作“1”,如果条件补黑兔有几只,也就是单位“1”的量已知,那么问题要问白兔有几只,属于分数乘法应用题。反之属于分数除法应用题,列方程解答或直接用除法解答。
课后反思:
课上我也增加了高教导补充的“补上合适的条件与问题,使
课后反思:
1、在课堂教学中,发现有部分学生由于关键句的语言叙述的方式不同或者省略了部分词语,语句不完整了,学生存在找数量关系有困难的情况。细析原因,还是分数意义的理解不到位,学生没有很好理解关键句中的分率是表示把谁平均分成几份,表示这样的几份。
2、从批阅国庆节长假的作业来看,学生掌握分数应用题的水平差异更大。除个别学生外,大部分学生对基本的一步应用题掌握还是不错,但对稍有变化的,稍复杂的类型,学生存在以下问题:(1)对前后单位“1”有变化的情况,当成“1”不变来计算。
(2)由于部分题目稍复杂,部分学生没有做到最后一步,解答步骤少了。
课后反思:
本课时教学内容是列方程解决“已知一个数的几分之几是多少求这个数”的简单实际问题的巩固练习,教材提供了相应的练习,所以我先充分利用好教材上提供的练习,如第7、8题是分数乘法和分数除法的对比练习,教学中,我引导学生抓住关键句分析数量关系式,然后思考用什么方法计算。解答完后还及时组织学生将每题中的两小题进行比较,思考这两题的异同点,想一想两题的数量关系相同,为什么解决问题的方法不同。在补充的分析数量关系式的练习中,我请学生根据关键句自己补充信息和问题,编两道分数乘法、除法的实际问题。课堂上学生们编题的积极性较高,交流也很热烈。看来,这样的练习形式很受学生欢迎。
今天的数学课内容不是很多,所以我还留一点时间给学生,让他们在课内完成作业,这样既能在一定程度上保证作业的质量,也便于教师课内辅导。略感遗憾的是学生们发言的积极性不是很高,有时我讲的太多了,以后还是要控制教师讲解的时间,多给学生交流的时间。
分数除法教案 16
教学目标:
1、使学生经历整数除以分数计算方法的过程,理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。
2、使学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增加学好数学的信心。
教学重难点
理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。
教学过程:
一、回顾整理,熟悉法则。
1、口算。
9/10÷3=4/7÷4=3/10÷1=3/5÷6=
口答出答案,并说出得到答案的具体过程。分数除以整数:是用分数乘整数的倒数。
2、梳理相关的知识。
分数除以整数的计算法则:分数除以整数,只要用分数乘以整数的倒数。
举例说说分数除以整数的意义:把9/10平均分成3份,每份是多少?
二、激活记忆,引出课题。
1、出示课件。
幼儿园李老师把4个同样大的饼分给小朋友。
每人吃2个,可以分给几个人?(口答答案和算式)
每人吃1个,可以分给几个人?(口答答案和算式)
每人吃1/2个,可以分给几个人?(口答答案和算式)
板书:4÷1/2=8(个)
2、观察算式,引出课题。
观察算式,揭示课题——整数除以分数。
三、探究算法,形成法则。
1、交流得数8个人的想法。
分一分,让学生动手分一分,体会8个苹果的由来;用算式表示4×2=8;比较算式4÷1/2=8和4×2=8,观察它们之间的联系,形成整数除以分数的算法,4÷1/2=4×2=8。
2、变换数据,增加感性认识。
每人吃1/3个,可以分给几个人?每人吃1/4个,又可以分给几个人?
先列算式,再在图中分一分得出结果,最后把算式写完整。
4÷1/3=4×3=12(个)
4÷1/4=4×4=16(个)
3、出示课件
有1根2米长的绳子
(1)截成每段1/2米,可以截几段?
(2)截成每段1/3米,可以截几段?
(3)截成每段长2/3米,可以截几段?
列出算式;在图中分一分,写出结果;思考计算方法,形成法则后再计算。
4÷2/3=4×3/2=6(段)
4、交流,形成计算法则。
小组交流整数除以分数的计算法则,再班级交流,形成整数除以分数的计算法则:整数除以分数,只要整数乘分数的倒数。
四、巩固练习,形成技能。
1、完成练一练。
12÷2/3=12×()/()9÷6/7=9×()/()
10÷2/5=8÷2/3=3÷6/7=12÷8/7=
2、8÷6/75/12÷3
除以一个数(0除外),等于乘这个数的'倒数。
3、课堂作业。
6÷1/42/3÷1/54/9÷2/38/3÷41/3÷3/45/6÷1/43/7÷75/7÷7/5
4、1壶水可以装几杯?
五、课堂总结
本节课你有什么收获?
教学反思:
1、创设生活情境:
数学知识来源于生活。通过创设幼儿园的老师分饼的生活情境来激发学生对知识的求知,增强学生的探索欲望,从而感悟学习数学的意义和必要。
2、注重自主探索:
学生有了知识的求知欲望后,赶紧让他们在小组内自主探索,借助圆片和图形语言理解理解整数除以分数的意义。通过观察,比较,思考与讨论,自主发现知识的内在联系,体会"除以分数"与"乘这个数的倒数"之间的关系。
3、经历知识的形成:
数学的学习过程注重学习的效果,更注重知识的学习过程。于是,我让学生通过自己的操作猜想整数除以分数的计算方法,并借助图形语言来验证知识的形成,如4÷1/2=8是怎样得出学生就能借助图形语言自己探索出每张分了2个1/2,4张就有8个1/2。从而培养学生学习数学的能力和逻辑推理能力,体会数学知识的严密性,还让学生明白了知识或真理是能接受实践的验证的,为以后同学们的学习猜想提供了很好的学习方法。
4、练习循序渐进:
设计练习时,我在算一算里安排有层次的计算,让学生先算简单的不需要约分,再算需要约分的,最后算要化成带分数的算式,满足了不同的学生有不同的收获。然后把所学的知识回归生活,解决实际问题。
分数除法 17
教学目标:
1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。
2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。
3、能很好的计算分数乘除混合运算的题目。
教学重点:分数除法的计算的方法。
难点:分数乘除的混合运算的运算的计算的正确率
教学过程:
一、复习回顾
小组讨论
1、怎么样来计算分数除法
请学生进行讨论,讨论好以后 再请学生进行回 答。
2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。
请生说说你是怎么来理解这句话的。
二、进行练习
1、做课本66的1
请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。
学生做好了以后再请学生进行口答。
对于做错的题目,让请学生自己来分析下错误的原因是什么?
2、做第2题
前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?
并请学生上黑板进行板演。
进行集体订正。
3、对比练习
1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?
2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?
4、做66页第4题
请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?
做好以后请学生进行板演
5、根据方程或算式,将应用题补充完整。
1)、120×3/8
( ),苹果树的棵数是梨树的3/8,( )?
2)、3/8x=120
( ),苹果树的棵数是梨树的3/8,( )?
3)、120+120×3/8
( ),苹果树的棵数是梨树的3/8,( )?
请学生独立的做,做好了以后请学生说说是怎么想的?
三、布置作业
做66页第5~7题
课前思考:
1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。
在( )里填上“>”“<”“=”
4/7×1/3( )4/7 4/7×4/3( )4/7
4/7÷1/3( )4/7 4/7÷4/3( )4/7
4/7÷1( )4/7 4/7×1( )4/7
先让学生独立思考,再说说判断的结果和理由。
2、在解决实际问题时,要紧紧围绕数量关系的分析来帮助学生掌握分数应用题的解答方法。
3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。
课后反思:
通过今天的复习整理,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。
在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。
在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。
课前思考:
我想本课时的教学重点之一是通过练习使学生进一步掌握分数除法及分数乘、除法的计算练习,要提高学生计算能力,尤其是计算正确率要提高,并及时指出学生中还存在的哪些计算方面的不良习惯。
教学时我想这样安排:第一环节进行口算练习,除了完成教材上的第1题,还要增加一些分数乘法、分数加、减法的口算。学生口算完成后要及时了解口算正确率并针对存在的共性问题进行讲评。第二环节进行分数除法练习,先完成教材上的第2题,专项进行计算练习,课堂上要给学习困难生板演的机会,让他们上来计算,教师及时了解他们计算中的问题,及时辅导。第三环节进行解方程的练习,第四环节进行一些解决实际问题的练习,主要是让学生分析教材上第4-7题的数量关系。
通过单元练习课要及时发现学生学习中还存在哪些问题,及时进行补救,并关注优秀学生,提供他们发展的空间。
课后反思:
通过今天的复习,学生能进一步反思并总结分数除法的计算方法,并进一步沟通分数除法与分数乘法的关系。
在做第7题时,部分学生对连续两问的应用题有困难,而且两题的单位“1”是变化的,国土面积是已知的,森林面积是未知的。正如高教导说的原因还是没有掌握分数应用题数量关系。我想在下节课在这方面还要加强训练。
课后反思:
按照我的课前设想,我将今天复习课的重点放在分数除法计算上,目的在于使学生进一步理解分数除法的计算方法,能熟练、正确地进行分数除法、连除、乘、除混合运算。回顾今天的课堂教学,在复习整理分数除法计算方法这一环节中有点粗糙,如第1题是直接写得数,对于一些学生来说,计算时如果不写出计算过程直接写得数可能困难较大,那么我要适当指导学生如何进行口算的方法。另外,在练习第2题和第3题时,我先让学生独立计算,然后请了几位学生板演,最后结合板演情况进行了讲评,主要是针对学生错误之处分析了错误原因,在这之后还可以让学生同桌之间互相批改一下这些计算练习,看看彼此做得对不对,错误原因是什么。
从课堂作业情况看,学生在计算方面的正确率有所提高,但还是不如人意。接下来,在计算方面还要多些练习,尽量提高计算正确率。
对于分数除法计算,到目前为止,我对学生的要求是写出计算过程,哪怕是要求直接计算的题目也是同样如此。因为我觉得分数除法计算直接写出得数确实有点难度,特别是要约分的习题。如果遇到特殊的分数除法,例分数除以整数,且分子是除数的倍数的,这样的习题直接写得数是比较简单的。等学生分数除法计算正确率与速度提高了,再逐步提高要求,要求直接写得数。
分数除法教案 18
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
教学难点:
1、探索分数除以整数的计算方法。
2、能够运用分数除以整数的方法解决简单的实际问题。
教学方法:
导学教学法
创新理念:
“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。
教具准备:
长方形纸、课件。
教学流程:
一、 创设情境 提出问题
(1) 把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?
(2) 把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?
【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】
二、 自主探究 小组交流
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)
自主学习提示
1. 利用手中的的`学习纸,涂一涂,算一算,尝试解决这两个问题。
2. 同桌之间说一说彼此的想法。
3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。
【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】
三 交流释疑
1、 初步感知分数除法
把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?
请同学们拿出图(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?
还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?
这个除法算式和以前学的除法有什么不同?
这就是这节课我们要学习的分数除法。(板书)
【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】
2、 初探算法
把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?
请大家在图(二)的上面涂一涂。
交流:(展示学生不同的涂法)
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用 × 1/3?)
观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。
(教师出示三组算式)
1/3÷5 4/5÷31/3÷5
指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,� 】
四、实践应用
1、算一算
9/10÷3015/16÷2014/15÷21 8/9÷6 5/6÷15
2、填一填
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)
【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】
五、课堂总结
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:
22页练一练
七.板书设计:
分数除法(一)
——分数除以整数
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2 (2) 4/7÷3
=4 /7×1/2
=2/7
分数与除法的关系课后练习题 19
3.用分数表示下面各算式的商。
(1)7÷9(2)4÷7(3)8÷15(4)5吨÷8吨
二、揭示课题
这节课学习“分数与除法关系的应用”。(板书课题)
三、探索研究
1.出示例4。
(1)出示例4并审题。
(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?
让全体学生尝试练习。
(3)集体订正。订正时让学生说说是怎样想的?
(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?
重点说明当两数相除得不到整数商时,其结果可以用分数表示。
2.练习教材第80页下面的“练一练”第1题。
3.教学例5。
(1)出示教材第80页复习题,让学生独立列式解答。
集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?
板书:30÷10=3
答:鸡的只数是鸭的3倍。
(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。
讨论后师生共同评价,主要有两种方法:
①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的。
②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的`只数作标准,可以用除法计算,列式为:7÷10=。
(3)比较复习题与例5异同点。
通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。
4、练习。教材第80页“练一练”第2题。
四、课堂实践
1.在括号里填上适当的分数。
8厘米=()米146千克=()吨23时=()日
41平方分米=()平方米67平方米=()公顷37立方厘米=()立方分米
2.五(1)班有女生25人,比男生多4人。
(1)男生占全班人数的几分之几?
(2)女生占全班人数的几分之几?
(3)男生人数是女生人数的几分之几?
五、课堂小结
1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?
2、求一个数是另一个数的几分之几应用题的解答方法是什么?
六、课堂作业
练习十四第5-9题。
板书设计
求一个数是另一个数的几分之几
一个数÷另一个数=教学
后记
教学效果良好,学生能熟练应用所学知识解决简单的“求一个数是另一个数的几分之几”的应用题。
分数除法教案 20
教学内容
一个数除以分数
教材第31、第32页的内容。
教学目标
1、结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。
2、能够熟练、正确地进行计算。
3、渗透转化的数学思想。
重点难点
重点:理解一个数除以分数的算理,掌握计算方法。
难点:能够熟练、正确地进行分数除法的计算。
教具学具
练习题投影片。
教学过程
一导入
1、口算。
3、解答应用题。
投影出示:小明步行2小时走了6千米。他每小时走多少千米?
学生计算后,说出这道题中的数量关系。
板书:路程÷时间=速度。
二教学实施
揭示课题:我们已经学过了分数除以整数的。计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。
板书课题:一个数除以分数
1、出示例2。
(1)学生读题,明确题意。
提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)
(2)列式。
提问:怎样求小明的速度和小红的速度?
引导学生利用“速度=路程÷时间”这个关系式列式。
了2千米”。
提问:1小时行多少千米,在图上怎样表示?
小时行了多少千米)
4、归纳方法。
老师:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?
学生自由发言。
板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、练习。
(1)完成教材第32页“做一做”的第1、2、3题。
(2)完成教材第34页练习七的第1~8题。
学生独立完成,集体订正。
三课堂作业新设计
1、在○里填上运算符号,在( )里填上适当的数。
四思维训练参考答案
思维训练
练习七
板书设计
3、分数除以分数
4、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
当一个数(0除外)除以小于1的数,商大于被除数;当除以大于1的数,商小于被
除数;当除数为1时,商等于被除数。另外,0除以任何数都为0。
备课参考教材与学情分析
本节课根据已有的数量关系,引出一个数除以分数的计算。在分数除以整数的基础上,例3研究一个数除以分数的计算,这是一个难点。教材以比较小明、小红两位同学“谁走得快些”,引导学生根据“路程÷时间=速度”这个数量关系列出两个除法算式。算式列出后,请同学们估一估结果是多少,是比被除数2大还是小,然后想办法进行验证,这个环节的设计既激发学生的探究欲望,又为发现被除数和商之间的关系留下悬念。另外,例2的设计体现了一种转化的思想。将“图”与“式”相对照进行解释、分析、说理,使学生在讲述算理的过程中,感受到用“数形结合”的思想解决问题的便捷性、科学性。
课堂设计说明
1、借助线段图引导学生一点点进行分析、说理,学生很自然就理解到要乘除数的倒数。因为有线段图辅助,学生理解起来很容易,自然而然地就明白了算理。
2、渗透思想,明确结构。
每一个数学知识都不是孤立存在的,计算教学更是如此,每个新内容都是在已学知识的基础上的进一步延伸,都是在已有知识基础上生长出来的。所以每次新课内容都不能把它看作一个孤立的内容。
分数除法 21
教学内容:
教科书第63页例6及“试一试”“练一练”,练习十二第9~12题。
教学目标:
1、使学生能灵活的计算分数连除和分数乘除的混合运算。
2、帮助学生进行分析两步计算的应用题的解题的分析时的思路
重点:使学生能灵活的计算分数连除和分数乘除的混合运算。
难点:在做混合运算时候的统一的转换的问题。强调如果遇到除法的时候该怎么办?
对策:让学生在练习中,出现错误并进行分析,从而进行解答。
教学过程:
一、复习
分数乘、除法我们是如何计算的?
分数除法的计算法则是:甲数除以乙数等于甲数乘以乙数的倒数。
二、新课
1、出示例题6
每盒果汁4/5升,每杯可装3/10升。3盒果汁可以倒满几杯?
2、请学生读题
请学生先说说你是怎么想的?
解法1:我们可以先算出3盒果汁一共有多少升?
4/5×3=12/5(升)
再计算一共可以倒多少杯?
12/5÷3/10=8杯
提问:有没有其他的方法吗?
请学生进行思考
可以先算出1盒果汁可以倒几杯
4/5÷3/10=8/3(杯)
8/3×3=8(杯)
可以让学生说说能不能用综合算式来进行计算
4/5×3÷3/10
=4/5×3×10/3
=8(杯)
总结:在乘除混合运算的时候,如果遇到除法的时候,我们就把他转化为乘法。
3、让学生尝试做试一试
5/8÷3/4÷5/7
让学生独立的做,做的时候要注意只要遇到除法就要转化为乘法。
让学生独立的做,做好以后再请人扮演。
提问:分数连除或分数乘除混合运算可以怎么样计算?请学生在小组里交流
三、巩固练习
1、做练一练的题
请学生独立的做,做好以后再请人板演
提问:在做的时候我们要注意什么?
2、请学生做练习十二的第9题目
请学生独立的做,做好以后再请人板演。
四、小结
今天这节课你学到了什么内容?
课前思考:
例6是乘除两步计算的实际问题,教学分数乘除混合或连除计算。例题可以列出不同的算式解答,所以在教学时如何让学生理解题中的数量关系,寻找出两种不同的解题思路是一个难点,另一个难点则是如何正确计算分数乘、除法的混合运算。
列出的两道综合算式,教材已经计算了一道。示范了计算分数乘除混合式题,一般先转化成分数连乘,再约分、相乘。突出了只能把算式里的除法变成“乘除数的倒数”。教材把另一道综合算式留给学生计算。实际教学中先让学生在书上独立计算,然后教师选择错误较为典型的计算要进行重点讲评,帮助学生分析计算中存在的错误。这一环节可能需要多花些时间。计算后还应该比一比,两道综合算式在计算时有什么相同点,进一步突出计算的策略和转化的方法。
在计算乘除混合式题时得到的体验会迁移到分数连除里去。教材在“试一试”之后让学生说说,分数连除或分数乘除混合运算可以怎样计算,促进迁移,发展认知结构,并在“练一练”中得到巩固。“练一练”的两道题分别是乘除混合和分数连除计算,在计算之后可以组织学生辨辨左题里的除数与乘数,比比右题里的整数与分数,说说计算的体会,使计算的思路更清楚、牢固,计算的技能更扎实、灵活。
课前思考:
例题6是通过实际生活问题的解决理解分数连除或乘除混合运算的计算方法,例题6的数量关系是以前学过的类型,但由于其中的数据由整数改为了分数,学生对分数的数感没有整数清晰,并且受前面分数乘除法应用题的干扰,可能会与分数乘除法应用题混淆。
教参上建议画简易实物图的方法帮助学生理解题意,我觉得这个办法可试一试,让学生读题后独立思考,列式解答。然后建议学生用画图的方法将自己的解答方法给大家作说明,看看谁能借助画的图说得很清晰?从而帮助学生理解数量关系,正确解答。
课后反思:
通过教学,学生都能明确计算分数乘除混合运算时,先把其中的除法转化为乘法,再按连乘的方法计算。但在实际计算时,会出现种种错误,如4/7÷1/5×7=4/7×5×1/7、5/8÷7/12÷10/7=8/5÷12/7×7/10,导致计算正确率不是很高。
在做练习十二的12题时,有少数学生不能有条理的按序分析解答,数量关系没弄清,所以在这题的讲解上花时很多。
课后反思:
与潘老师有同感,课堂上学生对例题6的理解与分数乘除混合与分数连除的计算方法掌握还可以,比我想象中的好。学生对两种解答方法的分析比较到位。能结合例题和巩固练习很好地总结计算方法。但在作业中,学生也出现了上面的计算问题,稍一提醒,学生马上心领意会。
第11题,也有部分学生分析理解错误,现在的教材缺少了基本数量关系的分析,类似于这题,原来教材上是有“工作效率×工作时间=工作总量”这样的训练的,现在教材上这样的训练没有了,都是结合具体题目来具体分析,在整数情况下,学生还是比较好理解,但现在的数据是分数,学生对分数的数感没有整数好,所以会出现颠倒的情况。
第12题我觉得这是训练学生灵活掌握分数乘除法应用题的很好材料,同时也是训练学生有序思考的很好材料。
课后反思:
和两位老师有同感,学生们对于例题6这样的实际问题的数量关系很清晰,能用两种不同的解题思路来分析,并能正确列出综合算式计算。在随后的计算过程中,我也发现学生们几乎不存在困难,只有个别学生在计算乘法时把乘数也变为倒数来计算。所以学生们已经会的,我们教师就不要再花时间去罗嗦了,可以将时间留给学生再完成一些练习,如练习十二的第12题,由于信息较多,要求的问题也多,并且分数乘法和分数除法混在一起,给部分学生分析数量关系造成了困扰。虽然,在课堂上我先指导了一下,教学生如何根据题中的信息,先求出什么再求什么,但由于少数学生分析数量关系存在困难,所以解决这一题问题较大。我想在明天和后天的单元练习中增加类似的题目,让学生再次练习。
《分数与除法的关系》教案 22
一,铺垫复习,导入新知
1,提问:A,7/8是什么数 它表示什么
B,7÷8是什么运算 它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题。
述:它们之间究竟有怎样的关系呢 这节课我们就来研究“分数与除法的关系”。
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米。
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系。)
板书: 1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法。
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块。)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块。)
B,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法。
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D,b为什么不能等于0
4, 看书P91 深化。
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算。
三,巩固练习
1,用分数表示下面各式的商。
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算。
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位“1”平均分成( )份,表示这样的。( )份的数。1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数。
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母。故此,分数与除法既有联系,又有区别。
在整数除法中零不能作除数,那么,分数的分母也不能是零。
五,家庭作业
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
《分数与除法的关系》课堂教案设计 23
课时目标
①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道“事物间在一定的条件下是可以相互转化的观点”。
教学及训练
重点求一个数是另一个数的几分之几的应用题。
教学内容和过程教学札记
一、创设情境
1.口答:30分米=米180分=()时
练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。
分数除法教案 24
【教学目标】
1、 结合具体的情景,巩固、掌握有余数除法的计算方法;
2、 通过小组合作探究,理解余数一定比除数小的道理;
3、 初步养成用数学解决实际问题的意识和能力。
【教学重难点】
在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。
【教学过程】
一、 情景感知,适时提问。
1、用竖式计算
(1)57÷9(2)40÷8(3)38÷7(4)24÷6
(请学生独立完成,及时校对)
[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]
2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?
T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))
二、探究发现,试作体验。
1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?
T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)1(盆))
2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。
T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?
三、合作交流,试说分享。
1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?
T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)
T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)2(人)
18÷5=3(组)3(人)
19÷5=3(组)4(人)
20÷5=4(组)
T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。
预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细)
T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,
如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?
(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)
21÷5=
22÷5=
23÷5=
24÷5=
25÷5=
2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)
3、归纳总结:
(1)余数要小于除数;
(2)知道除数是几,就能知道余数可能是几。
4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的。密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)
16÷4=
17÷4=
18÷4=
19÷4=
四、知识梳理,适时拓展。
1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。
2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。
3、解决问题:十月份有31天,十月份有几个星期?多几天?
4、拓展延伸,完成填一填。
5、同学们,这节课你有什么收获:你体验最深的是什么?
板书设计:
有余数的除法
17÷5=3(组)2(人)
18÷5=3(组)3(人)
19÷5=3(组)4(人)
20÷5=4(组)
余数一定要比除数小。
分数除法教案 25
教学目标
(1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。
(2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。
教学重点、难点
重点、难点:理解分数与除法的关系。
教具、学具准备
教 学过程
备 注
一、复习铺垫
1、口述下列分数的意义:
1/44/57/9
2、口答列式计算。
(1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?
120÷12=10(人)
(2)把12米长的钢管平均截成6段,每段长多少米?
12÷6=2(米)
归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。
如果把(2)题的12米改成1米,如何列式?
1÷6
它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。
出示课题“分数与除法的关系”。
二、教学新知
1、教学例2。
把1米长的钢管,平均截成6段,每段长多少米?
(1)边作图边讲解。
“1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。所以
1÷6=1/6(米)
(2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)
2、教学例3。
把3只月饼平均分成4份,每份是多少?
教学过程
备 注
(1)读题后指名学生列式:
3÷4
(2)边讲解边出示图式
(3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。
第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的'1份就是3/4只。
得出3÷4=3/4(只)
:从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。
3、归纳分数与除法的关系。
(1)观察例2、例3的算式。
1÷6=1/6(米)
3÷4=3/4(只)
(2)思考分数与除法有什么关系?
(3)结论:
被除数÷除数=被除数/除数
(4)练一练:
课本P75第1题。
把分数改写成除法算式。
4/7=()÷()21/25=()÷()
14/27=()÷()7÷()=7/()
讨论7÷()=7/()在括号里能填什么数?能否填任何数?为什么?
结论:在除法中,除数不能为零。
在分数中,分母不能为零。
三、练习反馈
1、7分米是几分之几米?
23分钟是几分之几小时?
学生独立练习后集中反馈,说一说思考过程。
:“7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。
把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。
2、练一练:
课本P76第5题填在书上。
四、课堂练习
课本P76第2、3、4题。
五、课后作业《作业本》
学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。
分数除法教案 26
教学准备:
教学目标:
1、结合具体情境观察比较,理解分数与除法数的关系,会用分数来表示两数相除的商。
2、运用分数与除法数的关系,探索假分数与带分数的互化方法,初步解解假分数与带分数互化的算理,会正确进行互化。
基本教学过程:
一、创设情境,理解分数与除法的关系:
1、出示题目:
把1块蛋糕平均分给2个小朋友,每人可以得到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?
①引导学生列出除法算式,并结合分数的意义得出结果从而得到两个关系式:
1÷2=1/2
7÷3=7/3
二、自主探索:分数与除法的关系:
①引导学生观察比较这两组关系式:
你发现分数与除法有什么关系?与同学说一说
②学生汇报自己的'想法:
③师:分数与除法的关系式:
④生说一说关系式的意思:
⑤引导学生思考:分数的分母能不能是0?为什么?
⑥小组讨论:
⑦学生汇报:
⑧练一练:第36页第一题:
三、探索假分数与带分数的互化方法:
①增加几道整数与带分数互化的题:
小组讨论方法:
学生汇报方法:
②假分数和带分数互化的题:
怎样把7/3化成带分数?怎样把化成假分数?
分组讨论方法:
学生汇报方法:
四、拓展练习:
第37页第1、2、3、4、题
五、:
教学反思:
分数除法教案 27
教学目标
使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。
教学重难点
进一步掌握分数除法的计算方法。
教学准备
教学过程设计
教学内容
师生活动
教学过程
一、揭示课题
二、计算练习
三、综合练习
四、课堂。
五、作业
1、复习法则。
问:分数除法要怎样计算?
2、计算:
5/7÷1014÷4/512/13÷8/9
三人板演。
3、练习八17
上下练习,说说是怎样想的。
问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?
4、练习八18
学生口答,选择说怎样算的?
1、练习八19第一行
四人板演;计算时说明要注意的约分等问题。
2、练习八20
说说已知什么数量,要求什么数量。
练习计算。
口答算式与结果,让学生说说各按怎样的数量关系列式。
3、练习八21
问:解答这道题的数量关系是什么?
学生解答。口答算式。
为什么3/4×2/5来计算?
3、口答。
根据下面的'条件,先说出哪个是单位“1”的量,再说出数量关系式。
(1)桃树占果树总棵数的2/5。
(2)三好学生占全班人数的3/20。
(3)修好了一条路的3/7。
(4)一堆煤的1/4已经运走。
(5)这批布的2/3是花布。
单位“1”的量×几分之几=几分之几的对应数量
练习八19第二、三
分数除法教案 28
教学目标
知识目标:
体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点
整数除以分数的。计算法则推导过程。
【教学难点】
理解一个数除以分数的计算法则的推导过程
教学过程
一、创设情境导入新课
唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?
二、自主探究合作交流
1、小组活动(1)出示教材27页“分一分”的第(1)、(2)题学生拿出准备好的圆片代表饼,动手分一分。
每2张一份,可以分成多少份?4÷2=2(份)
每1张一份,可以分成多少份?4÷1=4(份)
师:每1/2张一份,可以分成多少份?
学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)
师:每1/4张一份,可以分成多少份?
学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。
4÷1/4=16(份)
(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。
(2)学生独立完成教材28页“填一填”“想一想”师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?
生:一个数除以分数等于乘这个分数的倒数。
1、学生独立完成28页的“试一试”。
集体反馈,同桌之间订正。
师:通过刚才的计算你发现了什么?
生:一个数除以一个数(零除外)等于乘这个数的倒数。
三、课堂练习,巩固运用书本练一练
四、课堂小结畅谈收获
聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?(学生谈收获)
五、板书设计
整数除以分数
除以真分数商大于整数
整数除以分数
除以假分数商小于整数
除以1商等于整数
六、教学反思
本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。参赛者信息:姓名:杨毛毛